Connective tissue

Collagen

Most abundant protein of our body Role:

- Framework

 tendons, articular capsules, basal lamina, skin, vascular wall etc.
- extrinsic pathway of hemostasis

Structure: tropocollagen subunits bind to each other in a shifted construction Striped pattern Forms tufts, fibrils

Synthesis of collagen

Characteristics of synthesis

Sequence: repeated parts, approx. 30% of aminoacids is Gly, there's also much Pro

Posttranslational modification

- 1. Hydroxilation on Lys & Pro, dioxygenase enzymes catalysate it, with <u>vitamin C</u> cofactor
- 2. Glycosylation glucose-galactose disaccharide units

> CROSS-LINKING

Lys-aldehyde + Lys ----- lysinorleucyn (Schiffbase) -------

- 2 lysinaldehyde _____ aldole crosslinks
- 2 OH-Lys + Lys hydroxi-pyridin crosslinks

Collagen types

12 types of tropocollagen \longrightarrow 12 types of collagen

appearance	Type (eg.)	occurence (eg.)
Fibre forming	I	Most abundant – tendons, skin
	11	cartilage, corpus vitreum
	111	
Reticulum forming	IV	Lamina basalis
Associated to other collagens	V	Associated to I
	XII	Associated to I, II

Degradation of collagen

- Stable molecules degradation: tissue collagenase (MMP-1)
- Reassembly needed: wound healing, uterine cycle
- Pathologic degradation:

Clostridium histolyticum

Tumor growth, metastasis

Collagen defects

Secondary

Primary

- Ehlers-Danlos syndrome procollagenase activity, procollagen accumulation tensile skin, flexible joints
- Osteogenesis imperfecta

Gly [→]Cys substitution

- Epodermolysis bullosa
- Alport syndrome
- Chondrodysplasias

Elastic fibres

tensile, gives flexibility to tissues
occurence: aorta, wall of arteries, lungs,.
Not commono: skin, loose conn. tissues
Cross-links stabilizing it

A – elastic B – collagen

Synthesis of elastin

Fibrillin

- •Thin fibrils bound to elastin,
- •"framework" maintaining elastic fibres
- •Synthetized by fibroblasts

•abundant:

bones, tendons, vessel wall, lens-suspeding fibres, heart valves •When missing: damage to these organs– Marfan syndrome

Fibrillin with immunhistochemistry

Fibrillin monomer

Marfan syndrome

Fibrillin gene defect

Symptoms: tall, thin, long limbs, fingers (arachnodactylia), common scoliosis, subluxation of the eye lens, aneurysm and dissection of the aorta, heart valve insufficiencies

Proteoglycans

- Different amount but in all connective tissues Muc eg. Cartilage Less eg. tendon
- Seems homogenous by light microscopy
- Polyanions, binds much water, solidification (eg cartilagineous disc)
- Gel-like substance: diffusion, cell wandering
- Functional role
 eg. Heparine hemostasis
- Compounds:
 - Polysaccharides: 95%
 - Proteins: 5%

Structure

Polysaccharides

Name: mucopolysaccharides/glucose aminogycanes (GAG)

Disaccharide monomers

Sulfated on certain OH-groups except for HA

Туре	Occurence eg.	соо [−] сн₂он
Hyaluronic acid Iduronate N-Ac-glucoseamin	Corpus vitreum, synovia Embryonal ECM Helps proliferation	H H H H H H H H H H H H H H H H H H H
Dermatan-sulfate Iduronate N-Ac-galactose-amine	Skin, vessels	

chondroitin-sulfate glucuronate N-Ac-galactose-amin	Cartilage, bone Most abundant proteglycan	$\begin{array}{c} COO^{-} \\ H \\ H \\ OH \\ H \\ H \\ H \\ OH \\ H \\ H \\$
Heparin glucuronate/iduronate N-sulfo- glucoseamin	Granules of mast cells endothel antithrombotic	$\begin{array}{c} COU^{-} & -O_3 SOCH_2 \\ H & H & H \\ H & H & H \\ OU & H & O \\ \end{array}$
Heparan-sulfate Same but less sulfated	basement membrane bound to inner surface of cells	H OSO3 H HNSO3 СН20Н ^{С03} SOCH ⁵
Keratan-sulfate Galactose N-Ac-glucoseamin	Cornea, bone, cartilage	

Protein-carbohydrate binding

CS, HS, DS, KS – covalent binding HA – secondary binding

Mucopolisaccharidoses

Defect of the degrading *glycosidases* accumulation of substrates

- Hurler's disease alpha-L-iduronidase defect
- Hunter's disease iduronate-sulfate-sulfatase
 defect

Mental retardation,

Distorted face, body

Cause of death usually coronary occlusion

Proteoglycan types

- huge, aggregating PGs
 - ✓ Aggrecan
 - ✓ Perlecan
- small, Leucin-rich PGs
 - ✓ Biglycan
 - ✓ Decorin
- Cell membrane PGs
 - ✓ Syndecan
 - ✓ Appican

Adhesive glycoproteins

- Contain often RGD sequence (Arg-Gly-Asp), which is recognized by specific receptors
- Groups:
- 1. "trace forming" eg.: fibronectin, tenascin
- 2. BasementMembrane components eg.: laminin, entaktin/nidogén
- 3. haemostasis eg.: von Willebrand factor
- 4. bone mineralisation eg.: osteopontin

Fibronectin

- Multidomain structure
- Binds to fibrin and contains
 - Collagen binding site
 - Cell binding site
 - Binds to other fibronectin molecules aggregates
- Functions:
 - Cell motion
 - Wound healing
 - Embryonic development
- Pathobiochemistry: fibrosis
 - too many fibroblasts activated, much collagen deposited at the damaged site

Laminin

- 3 subunits: α , β , γ
- Main component of BasementMembrane
- Several binding sites:
 - Several cell binding sites
 - Collagen binding site
 - Entactin/nidogen binding site
 - Laminin binding site (able to bind to each other at the end of the subunits)
- 10 laminin types, eg.:
 - I laminin: epithel, endothel, smooth muscle BasementMembrane
 - II laminin=merosin: nervous system, muscle, cardiac muscle; when missing: mental retardation, muscular dystrophy

von Willebrand factor (vWf)

- Hugest known soluble protein, dimer
- dimer plasm glycoprotein • • synthesis: limited proteolysis D1 D2 D'D3 A3 D4 B1-3 C1 C2 CK A1 Pro-VWF collagen **GPIIb/IIIa** GPIb FVIII spec. receptor on thrombocyte for vWf
- Important for stable thrombocyte adhesion

Osteopontin

- Role: bone remodelling and degradation
- Cell binding (RGD) synthetized by osteoclasts+early osteoblasts
- Heparin binding
- Hydroxiapatit binding
- Calcium binding

Adhesion receptors

- connection+signal recognition in the cell membrane
- Groups:
- Integrins cell extracell. matrix (ECM) adhesion
- Selectins
- Ig (immunoglobulin) superfamily

Cell-cell adhesion

• Cadherins (bind to Ca ion)

Integrins

- 2-subunit receptor:
 - $-\alpha$ -subunit: Ca binding sites
 - $-\beta$ -subunit: ligand binding sites –recognizing RGD sequence
- Types: 14 different α -subunits, 8 different β -subunits
- β_1 many cell types, commonly bound to ECM components
- β_2 only white blood cells (WBC)
 - EXCEPTION because cell-<u>cell</u> adhesion;
 WBC-endothel: chemotaxis, extravasation
 - $-\beta_3$ thrombocytes, eg. in fibrinogen receptor
- β_4 binds laminin
 - Formation of HEMIDESMOSOMES

(epithel-BasementMembrane connection)

activated endothelium

COOH α-granules of activated platelets

Weibel-Palade bodies of endothelial cells

& short cytoplasmic region

- Heterophil: ulletdifferent rec. and diff. ligand
- Ca-dependent \bullet
- Lectin domain: • sugar/oligosaccharide recognition

Selectins

- Types:
 - L : leukocytes (constitutive)
 - P : endothel cells, thrombocytes (not constitutive, only if endothel activated)
 - E : endothel cells (constitutive)

lg - CAM

- Homo- és heterophil, Ca-independent
- Types:
 - ICAM-1, 2 (intercell. adh. molec.): heterophil bonds, binds to β_2 integrins
 - NCAM (neural cell adh. molec.): homophil bonds
- Function: tissue remodelling (embryonic development, regeneration)

Cadherins

- homophil, Ca-dependent
- 3-4 Ca binding domain
 - If there's no Ca conformation change degradation
- Key role in embryogenesis
- adults: development of normal cell-cell interactions
- Spec. desmosomal cadherins
 - DESMOSOME: stable composition of epithel
 - cadherins eg. desmoglein, desmocollin
 - IC binding to intermediate filaments

Cytosceleton

Intracellular filamentum system

- Cell shape
- Tract for motion
- <u>3 types :</u>
 - 1. Microfilaments
 - 2. Intermediate filaments
 - 3. Microtubules

Microfilaments

Basic in each cell ≻Width: 7nm ➢Monomer: globular actin ➢Polimerization into F-actin ATP dependent, polarized ➤Fast remodelling ➢Polimerization starts at critical cc but actin binding proteins can withhold it

Task of actin I

• framework

Task of actin II.

Tract for motion

The mechanoenzyme myosin

<u>myosin I</u> – membrane-cytosceleton interaktion (vesicle transport)

<u>myosin II</u> – muscle, cytokinesis

Contraction ring

Task of actin III

- Polimerization in response to extracellular effects – focal adhesive plaques: binding to extracellular elements
- Plasma membrane cambers in the direction of polimerisation— phagocytosis, chemotaxis

Pathobiochemistry of microfilaments

hereditary spherocytosis

Spectrin defect → unstable cytosceleton, spherical RBCs, degraded by the spleen

Duchenne's disease

(dystrophia musculorum progressiva) dystrophin defect – vulnerable to mechanic effects

cytosceleton \longrightarrow fibre damage

 Role of F-actin in certain bacterial infections (Listeria – actin)

Intermediate filaments

- Width 10 nm
- Hardening of cells
- Stabilizing
- No polarization
- Much in those cells which undergo strong mechanic effects
- Diagnostic importance: determination of origin of anaplastic tumors

GFAP staining

Types of intermediate filaments

Nuclear	Lamin	inner sruface of nuclear membrane
Epithelial	Keratin I and II (acidic and basic)	Epithel and adnexa (hair, nail, etc)
Vimentin-like	Vimentin	certain mesenchymal cells
	Desmin	muscle
	GFAP	Glial cells
	Periferin	certain neurons
Axonal	Neurofila- ments	Neurons

Microtubules I

- Width: 24 nm
- Tract for motion
- Polimerized from tubulin dimers
- Fast remodelling
- Polarizedt (+ and end)
- Building up in positive direction
- Degrading in negative direction

Microtubules II

- Polimerization: starts from centriolum, basal body(MTOC) negative end here
- Mechanoenzymes:
 Kinesin → +
 Dinein + → -
- Tasks:

- 1. proliferation chromosome wandering
- 2. neurons fast axonal transport
- 3. kinocilia, flagella
- 4. other cells transport of IC organelles, vesicles

Functions of microtubules

No cell proliferation without proper microtubule function MT toxins – cytostatic drugs pl. colchicin, taxol, Vinca alcaloids

Functions of microtubules

Nature Reviews | Neuroscience